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Abstract. The self-energy-functional approach proposed recently is applied to the single-band Hubbard
model at half-filling to study the Mott-Hubbard metal-insulator transition within the most simple but
non-trivial approximation. This leads to a mean-field approach which is interesting conceptually: Trial
self-energies from a two-site single-impurity Anderson model are used to evaluate an exact and general
variational principle. While this restriction of the domain of the functional represents a strong approxi-
mation, the approach is still thermodynamically consistent by construction and represents a conceptual
improvement of the “linearized DMFT” which has been suggested previously as a handy approach to study
the critical regime close to the transition. It turns out that the two-site approximation is able to reproduce
the complete (zero and finite-temperature) phase diagram for the Mott transition. For the critical point
at T = 0, the entire calculation can be done analytically. This calculation elucidates different general as-
pects of the self-energy-functional theory. Furthermore, it is shown how to deal with a number of technical
difficulties which appear when the self-energy functional is evaluated in practice.

PACS. 71.10.-w Theories and models of many-electron systems – 71.15.-m Methods of electronic structure
calculations – 71.30.+h Metal-insulator transitions and other electronic transitions

1 Introduction

The correlation-driven transition from a paramagnetic
metal to a paramagnetic insulator (Mott-Hubbard tran-
sition [1–3]) is one of the most interesting problems in
condensed-matter physics. As a prime example for a
quantum-phase transition, the Mott-Hubbard transition
is important from the physical point of view but also for
the development and test of general theoretical methods to
treat correlated electron systems. The minimum model re-
quired to study the Mott-Hubbard transition is the single-
band Hubbard model [4–6]. Inherent to this model is the
competition between the electrons’ kinetic energy which
tends to delocalize the electrons and favors a metallic state
and the on-site Coulomb interaction which tends to local-
ize the electrons to avoid double occupancies and thereby
favors an insulating state at half filling. Except for the
one-dimensional case [7], however, exact results with re-
gard to the nature of the transition and the critical inter-
action strength Uc are not available – even for this highly
simplified model system. A direct numerical solution us-
ing exact-diagonalization or quantum Monte-Carlo meth-
ods [8] suffers from the difficulty to access the thermody-
namic limit or the low-temperature, low-energy regimes.
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Considerable progress has been made in recent years
due to the development of the dynamical mean-field the-
ory (DMFT) [9–11] which focuses on the opposite limit
of infinite spatial dimensions D = ∞ [12–15]. Within the
DMFT the problem is simplified by mapping the original
lattice model onto an impurity model the parameters of
which must be determined by a self-consistency condition.
Different techniques to solve the effective impurity model
have been employed to study the Mott transition within
the DMFT, iterative perturbation theory [9,16,17], ex-
act diagonalization [18–21], renormalization-group meth-
ods [22–24], and quantum Monte-Carlo [25–29]. One of the
most important characteristic of the transition is the value
of the critical interaction strength Uc at zero temperature.
Roughly, the different techniques to solve the mean-field
equations predict Uc/W ≈ 1 − 1.5 where W is the width
of the free density of states.

Recently, a self-energy-functional approach (SFA) has
been put forward [30]. The SFA is a general variational
approach to correlated lattice models where the grand po-
tential Ω is considered as a functional of the self-energy Σ.
As this functional is constructed from an infinite series of
renormalized skeleton diagrams, it is not known in an ex-
plicit form and the variational principle δΩ[Σ] = 0 cannot
be exploited directly. Usually, one replaces the exact but
unknown functional with an explicitly known but approx-
imate one – this is essentially the standard diagrammatic
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approach [7] which leads to weak-coupling approximations
in the end [31]. Opposed to this weak-coupling perturba-
tional approach, the functional dependence Ω[Σ] is not
approximated at all in the SFA. The key observation is
that the functional, though unknown explicitly, can be
evaluated on a restricted domain of trial self-energies S.
The evaluation of the functional is exact, while the ap-
proximation is due to the fact that the self-energy in the
variational principle is no longer considered as arbitrary.
In this way, depending on the choice for the space S, some
well-known but also some novel approximations can be re-
alized. Here we are interested in the single-band Hubbard
model with Hamiltonian H . As argued in reference [30] a
useful trial self-energy has to be constructed as the exact
self-energy of a different model (“reference system”) with
Hamiltonian H ′. The reference system can be chosen arbi-
trarily – it must, however, share the same interaction part
with the original model H . The variational parameters at
one’s disposal are therefore the one-particle parameters of
the reference system t′. The trial self-energy is parame-
terized as Σ = Σ(t′), and the variational principle reads
∂Ω[Σ(t′)]/∂t′ = 0. To provide trial self-energies is the
only purpose of the reference system H ′. Whenever one is
able to compute Σ for the reference system H ′, an exact
evaluation of Ω[Σ(t′)] is possible.

Choosing H ′ to be a system of decoupled sites, yields
a Hubbard-I-type approximation. An improved approxi-
mation is obtained when H ′ consists of decoupled clus-
ters with a finite number of sites Nc > 1 per cluster as
has been considered in references [32,33]. This approach
not only recovers the so-called cluster-perturbation theory
(CPT) [34–36] but also gives a variational improvement
(V-CPT) which e.g. allows to describe phases with spon-
taneously broken symmetry [33]. Another possibility is to
take Nc = 1, which implies the trial self-energy to be lo-
cal, but to include a coupling to a number of nb additional
uncorrelated (“bath”) sites. In this case the reference sys-
tem consists of a decoupled set of single-impurity Ander-
son models (SIAM) with ns = 1 + nb sites each. As has
been shown in reference [30], this approach not only re-
covers the DMFT (namely in the limit nb → ∞) but also
provides a new variant of the exact-diagonalization ap-
proach, namely for any finite nb. As compared to previous
DMFT-exact-diagonalization approaches [18–21], the con-
struction gives a thermodynamically consistent approx-
imation even for small nb. More complicated reference
systems may be taken for the construction of consistent
approximations, for example a system of decoupled clus-
ters of size Nc where each site in the cluster is coupled to
nb additional bath sites. It has been shown [32] that in
the limit nb → ∞ the cellular DMFT (C-DMFT) is ob-
tained [37], while approximations with finite nb represent
cluster approximations which “interpolate” between the
CPT (nb = 0) and the C-DMFT (nb = ∞).

In the present paper the Mott transition is studied
within the most simple but non-trivial approximation:
The variational principle δΩ[Σ] = 0 is exploited us-
ing a local trial self-energy from a reference system with
Nc = 1 and a single additional bath site only, nb = 1. As

ns = 1 + nb = 2 this approximation will be referred to as
the two-site dynamical impurity approximation (ns = 2-
DIA) in the following.

The paper is organized as follows: A brief review of
the self-energy-functional approach will be given in the
next Section 2. The general aspects of the evaluation of
the SFA are discussed in Section 3 while Section 4 focuses
on local approximations (Nc = 1, ns arbitrary) in partic-
ular. In Section 5 the further specialization to the case
ns = 2 is considered. The ns = 2 dynamical-impurity ap-
proximation is motivated (i) by the fact that at the crit-
ical point for the Mott transition the entire calculation
can be done analytically, (ii) by the conceptual simplic-
ity of the approach which rests on a single approximation
only and (iii) by making contact with a linearized DMFT
(L-DMFT) [38–43] developed previously. This is discussed
in detail in Section 5 while Section 6 then presents the an-
alytical calculation for the critical regime. The results are
discussed in Section 7. The complete phase diagram for
T = 0 and finite temperatures is addressed in Section 8
and the conclusions are given in Section 9.

2 Self-energy-functional theory

Useful information on correlated electron systems can be
gained by exact-diagonalization or quantum Monte-Carlo
methods applied to a lattice of finite size [8]. This ap-
proach, however, suffers from the difficulty to access the
thermodynamic limit and is therefore of limited use to de-
scribe phases with long-order and phase transitions. On
the other hand, using an embedding approximation, one
can directly work in the thermodynamic limit and describe
phase transitions while the actual numerical treatment has
to be done a system of finite size only. In the context of
an embedding technique we have to distinguish between
the original model of infinite size H and an (e.g. spatially)
truncated reference system H ′. The reference system must
not necessarily be finite but it may consist of an infinite
number of decoupled subsystems with a finite number of
degrees of freedom each. In any case, H ′ must be exactly
solvable.

If one is interested not only in the equilibrium ther-
modynamics but also in the elementary one-particle ex-
citations, an embedding technique should focus on a dy-
namical quantity, such as the frequency-dependent self-
energy Σ. The knowledge of Σ then allows to derive a
thermodynamic potential Ω as well as different static and
dynamic quantities via general relations. The main steps
are the following: (i) Truncate the original model H to ob-
tain a simpler model H ′ which is tractable numerically. (ii)
Calculate the self-energy Σ′ of the reference system. (iii)
Use Σ = Σ′ as an approximation for the self-energy of
H and determine the grand potential Ω as well as further
quantities of interest. (iv) To get a self-consistent scheme,
optimize the parameters of H ′ by a feedback from the ap-
proximate solution at hand. Ideally, the last step should
be based on a general variational principle. This is exactly
the strategy of the self-energy-functional approach (SFA)
proposed recently [30]. A brief review of the essentials of
this approach is given in the following.
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Consider a system of fermions on an infinite lattice
with on-site Coulomb interaction at temperature T and
chemical potential µ. Its Hamiltonian H = H0(t)+H1(U)
consists of a one-particle part which depends on a set
of hopping parameters t and an interaction part with
Coulomb-interaction parameters U :

H =
∑
αβ

tαβc†αcβ +
1
2

∑
αβγδ

Uαβδγc†αc†βcγcδ . (1)

The grand potential Ω can be obtained from the station-
ary point of a self-energy functional

Ωt[Σ] ≡ Tr ln
(−(G−1

0 − Σ)−1
)

+ F [Σ] (2)

as has been discussed in reference [30]. Here the sub-
script t indicates the parametric dependence of the func-
tional on the hopping. This dependence is exclusively due
to G0 = 1/(ω + µ − t), the free Green’s function of H .
Further, F [Σ] is the Legendre transform of the Luttinger-
Ward functional Φ[G]. As the latter is constructed as an
infinite series of renormalized skeleton diagrams [7], the
self-energy functional is not known explicitely. Neverthe-
less, the exact evaluation of Ωt[Σ] and the determina-
tion of the stationary point is possible [30] on a restricted
space S of trial self-energies Σ(t′) ∈ S. Due to this re-
striction the procedure becomes an approximation.

Generally, the space S consists of t′ representable self-
energies. Σ is termed t′ representable if there are hopping
parameters t′ such that Σ = Σ(t′) is the exact self-energy
of the model H ′ = H0(t′) + H1(U) (“reference system”).
Note that both the original system H and the reference
system H ′ must share the same interaction part. For any
Σ parameterized as Σ(t′) we then have [30]:

Ωt[Σ(t′)] = Ω′(t′)

+ Tr ln
(−(G0(t)−1 − Σ(t′))−1

)
− Tr ln

(−(G0(t′)−1 − Σ(t′))−1
)

, (3)

where Ω′(t′), G′
0 ≡ G0(t′) = 1/(ω + µ − t′), and Σ(t′)

are the grand potential, the free Green’s function and the
self-energy of the reference system H ′ while G0 is the free
Green’s function of H . For a proper choice of t′, a (nu-
merically) exact computation of these quantities is possi-
ble. Hence, the self-energy functional (3) can be evaluated
exactly for this Σ = Σ(t′). A certain approximation is
characterized by a choice for S. As Σ is parameterized
by t′, this means to specify a space of variational param-
eters t′. Any choice will lead by construction to a non-
perturbative approach which is thermodynamically con-
sistent as an explicit expression for a thermodynamical
potential is provided. It turns out that a stationary point
of the self-energy functional is a saddle point in general.
As in different standard variational methods, such as in
the time-dependent density-functional approach [44], in
the Green’s-function approach [31] and also in a recently
considered variant [45], this implies that there is no strict
upper bound for the grand potential. For a further discus-
sion of the general concepts of the SFA see reference [30].

(b)(a)

Fig. 1. Schematic representation of the single-band Hubbard
model H (a) and a possible reference system H ′ (b). H ′ is
a set of decoupled single-impurity Anderson models with one
correlated (U > 0) impurity site and a number of ns−1 uncor-
related (U = 0) bath sites each. In the figure ns = 4. Note that
the interaction part is the same for (a) and (b). Variational
parameters are the one-particle parameters of H ′.

So far the discussion is completely general. In Section 4
we will consider H to be the Hubbard model and H ′ to
be a system of decoupled single-impurity Anderson models
(SIAM). Each SIAM consists of ns sites, one correlated site
(with U > 0) and ns−1 uncorrelated “bath” sites (U = 0).
This is illustrated by Figure 1 for ns = 4. Note that for
any choice of ns, the original system and the reference
system share the same interaction part – as required by
the general theory. The one-particle parameters of H ′ are
the variational parameters, i.e. the one-particle energies of
the original sites and the bath sites and the hopping (“hy-
bridization”) between them. As noted in reference [30],
the dynamical mean-field theory (DMFT) is recovered in
the limit ns → ∞. For ns < ∞ one obtains a new variant
of the DMFT-exact-diagonalization approach [18–21]. For
a finite number of bath sites, the DMFT self-consistency
condition cannot be strictly satisfied. In the DMFT-ED
method one therefore has to introduce a certain measure
which allows to minimize the error due to the discretiza-
tion of the bath. The conceptual advantage of the SFA
consists in the fact that this measure is replaced by a vari-
ational procedure which is based on a physical variational
principle. As shown in reference [30], a very good quan-
titative agreement with results from full DMFT calcula-
tions can be achieved for the quasi-particle weight even
with ns = 4. With ns = 2 a much simpler approach is
considered here (Sects. 5 and 6) which, however, is still
thermodynamically consistent and allows for simple and
systematic investigations of the Mott transition.

3 Evaluation of the self-energy functional

The evaluation of the self-energy-functional theory can be
done by solving the Euler equation [30] corresponding to
the variational principle. While such an approach is possi-
ble in principle, it appears complicated as dynamical two-
particle quantities of the reference system are required.
An attractive alternative consists in the direct calculation
of the grand potential along equation (3). The numerical
computation of Ωt[Σ(t′)] for a given set of one-particle pa-
rameters t′ is straightforward for a reference system H ′ of
finite size. There are, however, a few technical difficulties
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which appear in the practical calculation and which shall
be discussed in the following. The problem of finding a
stationary point of the function t′ → Ωt[Σ(t′)] is not ad-
dressed here as this is a standard numerical problem very
similar to the problem of finding a minimum of a real
single-valued function of several arguments.

Ωt[Σ(t′)] consists of three parts as given by equa-
tion (3). The grand potential of the reference system can
be calculated as Ω′(t′) = −T ln tr′ exp(−(H ′−µN ′)/T ) =
−T ln

∑
m exp(−(E′

m − µN ′
m)/T ) from the many-body

eigenenergies E′
m − µN ′

m of H ′ − µN ′ where N ′ is the
total particle number operator. Direct numerical diago-
nalization or (at T = 0) the Lanczos technique [46] may
be used.

Next, the second term on the r.h.s. of equation (3)
is discussed. In the following the dependence of Σ on
t′ will be suppressed for convenience and its dependence
on ω is made explicit in the notations. The diagonaliza-
tion of H ′ −µN ′ yields (via the Lehmann representation)
the Green’s function G′(ω) and the free Green’s function
G′

0(ω) of the reference system. The self-energy is then
obtained from the Dyson equation of the reference sys-
tem Σ(ω) = G′

0
−1(ω) − G′−1(ω). Using the self-energy

Σ(ω), one obtains the (approximate) Green’s function of
the original model via G(ω) ≡ (G−1

0 (ω) − Σ(ω))−1. The
remaining task is to calculate Tr ln(−G) for a lattice con-
sisting of a finite number of sites L. The thermodynamic
limit L → ∞ is performed in the end. Translational sym-
metry is not necessarily required.

It is important to note that G(ω) is causal, i.e. G(ω +
i0+) = GR(ω) − iGI(ω) with GR(ω), GI(ω) Hermitian
and GI(ω) positive definite for any real ω (0+ is a posi-
tive infinitesimal). The causality of the Green’s function
G(ω) is ensured by the causality of Σ(ω) and G0(ω), see
Appendix A. The latter are causal as these are exact quan-
tities.

Let ωm be the (real, first-order) poles of G(ω). For
ω → ωm we have G(ω) → Rm/(ω − ωm) where due
to the causality of G(ω) the matrix Rm is positive defi-
nite. Therefore, the frequency-dependent diagonalization
of G(ω) = U(ω)g(ω)U(ω)† with unitary U(ω) (for real
ω) yields a diagonal Green’s function g(ω) with elements
gk(ω) that are real for real ω and have first-order poles at
ω = ωm with positive residues.

As the Green’s function can be written as G(ω) =
1/(ω + µ − t − Σ(ω)), the unitary transformation U(ω)
also diagonalizes the real and symmetric matrix t+Σ(ω),
i.e. t + Σ(ω) = U(ω)η(ω)U(ω)† and gk(ω) = 1/(ω + µ −
ηk(ω)). The ηk(ω) are real for real ω and have first-order
poles at ω = ζn with ζn being the poles of the self-energy.
For ω → ζn we have Σ(ω) → Sn/(ω − ζn) with positive
definite Sn. Consequently, the residues of ηk(ω) at ω = ζn

are positive.
One can write gk(ω) =

∑
m Rk,m/(ω−ωm)+g̃k(ω) and

ηk(ω) =
∑

n Sk,n/(ω−ζn)+η̃k(ω) with Rk,m, Sk,n > 0 and
where g̃k(ω) and η̃k(ω) are analytical in the entire ω plane.
As G(ω) ∼ 1/ω and Σ(ω) ∼ const. for ω → ∞, one has
g̃k(ω) = 0 and η̃k(ω) = const. and real. Consequently,

−(1/π)Im gk(ω+ i0+) ≥ 0 and −(1/π)Im ηk(ω+ i0+) ≥ 0.
This will be used in the following.

The trace “Tr” in equation (3) consists of a sum T
∑

ω
over the fermionic Matsubara frequencies iω = i(2n+1)πT
(n integer) and a trace “tr” with respect to the quantum
numbers α; see equation (1). The convergence of the fre-
quency sum is ensured by the usual factor exp(iω0+) from
the diagram rules. The calculation then proceeds as fol-
lows:

T
∑
ω

eiω0+
tr ln

−1
iω + µ − t − Σ(iω)

(a)
=

−1
2πi

∑
k

∮
C

dω eω0+
f(ω) ln (−gk(ω))

(b)
=

−1
π

∑
k

∫ ∞

−∞
dω f(ω) Im ln(−gk(ω + i0+))

(c)
= −

∑
k

∫ ∞

−∞
dω f(ω) Θ (ω + µ − ηk(ω))

(d)
= −

∑
k

∫ ∞

−∞
dω T ln(1 + e−ω/T )

dΘ(ω + µ − ηk(ω))
dω

(e)
= −2L

∑
m

T ln(1 + exp(−ωm/T ))− RΣ (4)

with
RΣ = −

∑
n

T ln(1 + exp(−ζn/T )) . (5)

In equation (4) ln denotes the principal branch of the
logarithm, f(ω) = 1/(exp(ω/T ) + 1) is the Fermi func-
tion, and C is a contour in the complex ω plane enclos-
ing the first-order poles of the Fermi function in counter-
clockwise direction. In step (a) the transformation U(ω)
is performed under the trace. Convergence of the inte-
gral for ω → ±∞ is ensured by the Fermi function
and by the factor eω0+

, respectively. Step (b) results
from analytical continuation to real frequencies. In step
(c) −(1/π)Im gk(ω + i0+) ≥ 0 has been used (see Ap-
pendix B). At this point the causality of the Green’s func-
tion is essential, as discussed above. In step (d) the Fermi
function is written as a derivative with respect to ω and
integration by parts is performed. Step (e) uses the results
of Appendix C for the derivative of the step function. As
the different diagonal elements of the Green’s function,
gk(ω), have the same set of poles and zeros1, the sum over
k becomes trivial and yields a factor 2L only where L
is the dimension of the hopping matrix, i.e. the number
of orbitals. The factor 2 accounts for the two spin direc-
tions. The contribution from the poles of the self-energy
(Appendix C) is denoted by RΣ . Apart from this correc-
tion term, Tr ln(−(G0(t)−1 − Σ(t′))−1) turns out to be
the grand potential of a system of non-interacting quasi-
particles with unit weight and energies given by the poles
of G(ω) ≡ (G−1

0 (ω) − Σ(ω))−1.
1 We formally allow for poles of gk(ω) and ηk(ω) with van-

ishing residue. Note that adding a pole with zero weight to
gk(ω) can only be accomplished if simultaneously a pole with
zero weight is added to ηk(ω), and Tr ln(−G) is unchanged.
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Consider now the third term on the r.h.s. of equa-
tion (3). A calculation completely analogous to equa-
tion (4) results in:

T
∑
ω

eiω0+
tr′ ln(−G′(iω)) =

− 2L
∑
m

T ln(1 + exp(−ω′
m/T )) − RΣ . (6)

Here ω′
m are the poles of G′. Again, the first term in equa-

tion (6) is the grand potential of a non-interacting system
of fermions with one-particle energies given by the poles
of the Green’s function G′. The same holds for the second
term, but with energies given by the poles of the self-
energy. By construction, the self-energy is the same for
both, the original system and the reference system. Hence,
the same correction term RΣ appears in equations (4)
and (6) and cancels out in equation (3).

Note that a pole of G(ω) at ω = ωm with residue
Rm → 0 implies a pole of G′(ω) at the same fre-
quency ωm (with residue R′

m → 0). Hence, contribu-
tions due to poles with vanishing residues cancel out in
equation (3). The reason is the following: Suppose that
gk(ω) = Rk,m/(ω − ωm) for ω close to ωm with residue
Rk,m → 0. For the diagonal elements of t+ Σ(ω) this im-
plies that ηk(ω) = (1/Rk,m)(ω − ωm) near ωm. A zero of
ηk(ω) with infinite positive coefficient 1/Rk,m must be due
to Σ(ω). Therefore, for the diagonal elements of t′+Σ(ω)
this means that η′

k(ω) = (1/Rk,m)(ω−ωm). Consequently,
g′k(ω) ≡ 1/(ω + µ − η′

k(ω)) = Rk,m/(ω − ωm) for ω close
to ωm with Rk,m → 0. The argument also shows that al-
though the residues do not appear in equations (4) and (6)
explicitly, one can state that poles with small residues will
give a small contribution in equation (3).

Based on the causality of the respective Green’s func-
tions, an efficient algorithm can be set up to find ωm and
ω′

m numerically which are then needed in equations (4)
and (6). The poles of G′(ω) are directly obtained from
the diagonalization of the reference system. The prob-
lem consists in finding the poles of G(ω). Allowing for
poles with vanishing (very small) residue, one can as-
sume the function g′k(ω) for fixed but arbitrary k to dis-
play all the poles of G′(ω). Since g′k(ω) is of the form
g′k(ω) =

∑
m R′

k,m/(ω−ω′
m) with R′

k,m ≥ 0, it is monoton-
ically decreasing. Hence, there is exactly one zero of g′k(ω)
located in the interval between two adjacent poles ω′

m

and ω′
m+1. As g′k(ω) is monotonous, the zero ζm can easily

be found numerically by an iterative bisection procedure.
The zeros of g′k(ω) are the poles of η′

k(ω) and the poles
of η′

k(ω) are the same as the poles of ηk(ω). Now, since
gk(ω) = 1/(ω + µ − ηk(ω)), gk(ω) and g′k(ω) must have
the same set of zeros. The function gk(ω) is monotonically
decreasing. Therefore, the poles of gk(ω) can be found be-
tween the ζm by using the same iterative bisection proce-
dure once again.

4 Local approximations

In the following we consider H to be the single-band
Hubbard model:

H =
∑
ijσ

tijc
†
iσcjσ +

U

2

∑
iσ

niσni−σ . (7)

For the reference system H ′ shown in Figure 1, the self-
energy is local: Σij(ω) = δijΣ(ω). Clearly, the approxima-
tion is the better the more degrees of freedom are included
in H ′. The optimal local approximation is obtained with
the most flexible (but local) trial self-energy. This is the
DMFT which is recovered for an infinite number of un-
correlated bath sites (per original correlated site), i.e. for
ns − 1 → ∞. On the other hand, ns = 1 corresponds to
a Hubbard-I-type approximation. Here it will be shown
that, for arbitrary ns, the evaluation of the self-energy
functional reduces to a one-dimensional integration only.
This is an important simplification for any practical nu-
merical (or even analytical) calculations.

In case that the self-energy is local it is advantageous
to start from step (c) in equation (4). Assuming transla-
tional symmetry, the matrix t + Σ(ω) is diagonalized by
Fourier transformation to reciprocal space. Its eigenvalues
ηk(ω) are given by ηk(ω) = ε(k) + Σ(ω) where k = (k, σ)
and ε(k) is the tight-binding Bloch dispersion. The self-
energy is taken to be spin-independent and independent
of the site index, i.e. a paramagnetic homogeneous phase
is assumed for simplicity. The second term on the r.h.s. of
equation (3) then becomes:

Tr ln(−(G0(t)−1 − Σ(t′))−1)
(c)
= −

∑
kσ

∫
dω f(ω) Θ (ω + µ − ε(k) − Σ(ω))

= −2L

∫
dω f(ω)

∫
dz ρ0(z)Θ (ω + µ − z − Σ(ω))

= 2L

∫
dω f(ω)

∫
dz R0(z)

d

dz
Θ (ω + µ − z − Σ(ω))

= −2L

∫
dω f(ω) R0(ω + µ − Σ(ω)) . (8)

Here L is the number of lattice sites, the factor 2 stems
for the spin summation, ρ0(z) = L−1

∑
k δ(z − ε(k))

is the non-interacting density of states, and R0(z) =∫ z

−∞ dz′ρ0(z′) is an antiderivative. Note that there is no
“correction term” RΣ , as the derivative in equation (8) is
with respect to z.

The reference system H ′ is a set of decoupled single-
impurity Anderson models with one correlated (“impu-
rity”) site and ns − 1 bath sites each. The Hamiltonian is
H ′ =

∑
i H ′(i) with

H ′(i) =
∑

σ

ε1c
†
iσciσ +

U

2

∑
σ

niσni−σ

+
ns∑

σ,k=2

εka†
ikσaikσ +

∑
σ,k

(
Vkc†iσaikσ + h.c.

)
. (9)
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The parameters ε1, εk, and Vk for k = 2, ..., ns are the
on-site energies of the impurity site and of the bath sites,
and the hybridization between them, respectively. These
are the variational parameters of the theory.

The third term on the r.h.s. of equation (3) reads:

Tr ln(−(G′
0(t

′)−1 − Σ(t′))−1)

= 2LT
∑
ω

eiω0+

(
ln(−G′

1(iω)) +
ns∑

k=2

ln(−G′
k(iω))

)

= −2L

∫ ∞

−∞
dω f(ω)

(
Θ(G′

1(ω)) +
ns∑

k=2

Θ(G′
k(ω))

)
(10)

where the first equation is derived in Appendix D and

G′
1(ω) =

1
ω + µ − ε1 − ∆(ω) − Σ(ω)

(11)

is the impurity Green’s function,

G′
k(ω) =

1
ω + µ − εk

(12)

is the (free) conduction-band Green’s function, and

∆(ω) =
ns∑

k=2

V 2
k

ω + µ − εk
(13)

is the hybridization function. The final expressions (8)
and (10) involve one-dimensional integrations only and
can therefore be calculated numerically without serious
problems.

5 Two-site dynamical impurity approximation

In the following we will focus on the case ns = 2, i.e. on
the two-site dynamical-impurity approximation (ns = 2-
DIA). There are different intentions which are followed
up:

(i) For any approximation within the context of the
SFA, one has to compute the self-energy of the reference
system H ′. As the interaction part is the same for both,
H and H ′, this still constitutes a non-trivial many-body
problem which can only be treated by numerical means in
most cases. The reference system characterized by Nc = 1
and ns = 2, represents an exception: For a special point
in the space of model parameters (zero temperature, half-
filling and U = Uc, the critical interaction for the Mott
transition), the entire calculation can be done analytically.
This not only includes the diagonalization of the refer-
ence system which actually is a simple dimer model but
also and more important here, the exact evaluation of the
self-energy functional for the trial self-energies considered
and the subsequent variational optimization. Therefore,
the study of the ns = 2-DIA is ideally suited to elucidate
different technical points which are relevant for any Nc

and ns and which must be considered carefully.

(ii) The ns = 2-DIA must be considered as inferior
when compared to approximations with higher ns and
when compared to ns = ∞ (the DMFT) in particular. On
the other hand, one has to keep in mind that the DMFT
must always be supplemented by an additional (numeri-
cal) method to solve the mean-field equations which neces-
sarily involves additional approximations. Even if the ad-
ditional approximations can be controlled, DMFT results
always depend on the accuracy of the numerical method
employed. As concerns the ns = 2-DIA, there is no such
difficulty: The theory rests on a single approximation only,
namely the restriction of the space S to self-energies rep-
resentable by the two-site reference system – the rest of
the calculation is rigorous. It is this conceptual simplicity
which makes the approximation attractive.

(iii) That an approach referring to an ns = 2-site
SIAM is able to give reasonable results has been shown
beforehand by the linearized DMFT (L-DMFT) [38–42].
The L-DMFT is a well-motivated but ad-hoc simplifica-
tion of the full DMFT and maps the Hubbard model
self-consistently onto the ns = 2-site SIAM just at
the critical point for the Mott transition. The L-DMFT
can be also be considered to represent the lowest-order
realization of a more general projective self-consistent
method (PSCM) [22]. As compared to the full DMFT,
the linearized theory yields surprisingly good estimates
for the critical interaction Uc in the single-band model,
on translation invariant lattices [38] as well as for lat-
tice geometries with reduced translational symmetry [39].
The approach can also be extended beyond the critical
regime [43]. The main disadvantage of the L-DMFT is
that it not consistently derived from a thermodynamical
potential. Another intention of the present paper is there-
fore to suggest a two-site method that conceptually im-
proves upon the L-DMFT in this respect. In fact, as the
parameters of the effective ns = 2-site impurity model are
determined via a physically meaningful variational princi-
ple, the two-site approximation within the SFA should be
regarded as an optimal two-site approach. The interesting
question is, of course, whether or not this improvement
of the method also implies improved results. To this end
the results from the analytical evaluation of the ns = 2-
DIA have to be compared with those of the L-DMFT and
with available numerical results for ns = ∞ (full DMFT).
This represents a good check of the practicability of the
new method. As the ns = 2-site DIA still represents a
very handy method, it can also be employed to investigate
overall trends. It will be interesting to study the critical
interaction Uc for a variety of different geometries (i.e. for
different free densities of states).

Let us first consider a numerical evaluation of the
theory. Figure 2 shows the results of a numerical calcu-
lation along the lines discussed above for the paramag-
netic phase of the Hubbard model at half-filling and zero
temperature. The free density of states (DOS) ρ0(z) is
taken to be semi-elliptical with a band width W = 4.
The calculations are performed using the ns = 2-DIA,
i.e. there is one bath site (per correlated site) only. Due
to manifest particle-hole symmetry, two of the variational
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Fig. 2. The grand potential Ω (per site) as calculated from
equation (3) and equations (8) and (10) for the reference sys-
tem with ns = 2 as a function of the hybridization strength V
(only the difference Ω(V ) − Ω(V = 0) is plotted). Calcula-
tions for the Hubbard model at zero temperature T = 0 and
half-filling (µ = U/2). The free density of states is taken to
be semi-elliptical with a band width W = 4. The interaction
strength is varied from U = 5 to U = 6 as indicated. Arrows
indicate stationary points of the self-energy functional. The
Mott transition takes place at a critical interaction strength
Uc ≈ 5.85.

parameters, the on-site energies, are already fixed: ε1 = 0
and ε2 = µ = U/2. As a function of the remaining vari-
ational parameter, the hybridization strength V ≡ Vk=2,
the grand potential Ω(V ) = Ω[Σ(V )] shows two (non-
equivalent) stationary points for U = 5 (see Fig. 2): a min-
imum at a finite V = 0.37 and a maximum at V = 0 (as
Ω(V ) = Ω(−V ), there is another minimum at V = −0.37
which can be ignored here). The two stationary points cor-
respond to two physically different phases: For V > 0 the
interacting local density of states is finite at ω = 0 while it
vanishes for V = 0. So there is a metallic and an insulat-
ing phase coexisting. Due to the lower Ω at the respective
stationary point, the metallic phase is stable as compared
to the insulating one. With increasing U the optimal Vmet

and the energy difference |Ω(Vmet) − Ω(0)| decrease. For
U = Uc ≈ 5.85 there is a metal-insulator (Mott-Hubbard)
transition which is characterized by a coalescence of the
stable metallic with the metastable insulating phase. For
U > Uc there is the insulating phase only.

Qualitatively, this continuous transition is completely
consistent with the preformed-gap scenario [11,22] (how-
ever, see also Refs. [47–49]). For U < Uc the self-energy
is a two-pole function. This leads to a three-peak struc-
ture in the interacting local density of states: Similar as in
the full DMFT, there are two Hubbard “bands” separated
by an energy of the order of U , and a quasi-particle reso-
nance at ω = 0. On approaching the critical interaction Uc

from below, the weight z of the resonance vanishes linearly
z ∼ (Uc − U) leaving a finite gap for U > Uc. As shown
in reference [30] the quasi-particle weight calculated from
the self-energy at the respective optimal V = Vmet is in

a very good quantitative agreement with results from full
DMFT calculations in the whole range from U = 0 to
U = Uc – for ns = 4 and even for ns = 2 which is the case
considered here.

6 “Linearized” dynamical impurity
approximation

In the following we will concentrate on the critical regime
U → Uc. It will be shown that the critical interaction
strength can be calculated analytically for ns = 2. The
independent analytical result can be compared with the
numerical one of the preceding section. This represents a
strong test of the numerics.

Consider the function Ω(V ) = Ω[Σ(V )]. As Ω(V ) =
Ω(−V ) there must be a stationary point of Ω(V ) at V = 0
for any U . This implies that the linear term in an expan-
sion around V = 0 is missing, i.e.:

Ω(V ) = Ω(0) + A · V 2 + O(V 4) . (14)

The coefficient A depends on U . Assuming that the metal
is stable against the insulator for U < Uc, we must have
A < 0 for U < Uc and A > 0 for U > Uc. This is a nec-
essary condition for a continuous (“second-order”) transi-
tion and consistent with the numerical results displayed in
Figure 2. Therefore, the critical point for the Mott tran-
sition within the two-site model is characterized by

A = 0 . (15)

The task is to calculate the three contributions to the
grand potential following equation (3), to expand in V up
the the second-order term and to find the interaction
strength satisfying the condition (15).

Consider the grand potential of the reference system
first. With ε1 = 0, ε2 = U/2 and µ = U/2 the ground state
of the two-site system, equation (9), lies is the invariant
subspace with total particle number N ′ = 2. The ground-
state energy E′

0 is readily calculated:

E′
0 =

3
4
U − 1

4

√
U2 + 64V 2 . (16)

At T = 0 the grand potential of the reference system is
Ω′ = LE′

0 − Lµ〈N ′〉. Therefore,

Ω′/L = −U

4
− 1

4

√
U2 + 64V 2 = −U

2
− 8V 2

U
+ O(V 4) .

(17)
Actually, this is the grand potential per site.

We proceed with the third term on the r.h.s. of equa-
tion (3). For the analytical calculation, it is convenient to
start from equation (6):

T
∑
ω

tr′ ln(−G′(iω)) = 2L
∑

r

ω′
rΘ(−ω′

r) − RΣ (18)

where it has been used that −T ln(1 + exp(−ω/T )) =
ωΘ(−ω) for T = 0. The factor 2 is due to the spin de-
generacy. RΣ will cancel out later. The Green’s function
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of the two-site model is easily calculated. There are four
excitation energies, labeled by r, given by the four poles
of the impurity Green’s function at:

ω′
r = ±1

4

(√
U2 + 64V 2 ±

√
U2 + 16V 2

)
. (19)

This yields:

T
∑
ω

tr′ ln(−G′(iω))/L = −U − 32V 2

U
+O(V 4)−RΣ/L .

(20)
Finally, for the second term on the r.h.s. of equation (3)

we have:

T
∑
ω

tr ln(−G(iω)) =

2L
∑

r

∫ ∞

−∞
dz ρ0(z) ωr(z)Θ(−ωr(z)) − RΣ . (21)

Here, equation (4) has been used with k = (k, σ), and the
k sum has been replaced by an integration over z weighted
by the free DOS ρ0(z). For a given z = ε(k), the quasi-
particle energies are obtained as the poles of the lattice
Green’s function in reciprocal space, i.e. from the solutions
ω = ωr(z) of the equation ω+µ−z−Σ(ω) = 0. To find the
roots, the self-energy of the reference system is needed:

Σ(ω) =
U

2
+

U2

8

(
1

ω − 3V
+

1
ω + 3V

)
. (22)

This leads to a cubic equation:

ω3 − zω2 − (9V 2 + U2/4)ω + 9zV 2 = 0 . (23)

The solutions for V = 0 are easily obtained. For small
V 
= 0 we find one root near ω = 0:

ω1(z) =
36z

U2
V 2 + O(V 4) , (24)

and another one near ω = −U/2:

ω2(z) =
z

2
− 1

2

√
z2 + U2

−
(

18z

U2
+

18
U2

z2 + U2/2√
z2 + U2

)
V 2 + O(V 4) .

(25)

Because of the step function in equation (21), the third
root near ω = U/2 is not needed here. This yields:

T
∑
ω

tr ln(−G(iω))/L = −RΣ/L

+ 2
∫ ∞

−∞
dz ρ0(z)

(
Θ(z)

36z

U2
V 2 + ω2(z)

)
+ O(V 4) .

(26)

Inserting the results, equations (17, 20), and (26), into
equation (3) and using the symmetry ρ0(z) = ρ0(−z), we
find:

Ω/L = const. + V 2

(
24
U

+
72
U2

∫ 0

−∞
dz ρ0(z) z

− 36
U2

∫ ∞

−∞
dz ρ0(z)

z2 + U2/2√
z2 + U2

)
+ O(V 4) . (27)

Now, the condition (15) gives the critical U for the Mott
transition:

Uc = −3
∫ 0

−∞
dzρ0(z)z+

3
2

∫ ∞

−∞
dzρ0(z)

z2 + U2
c /2√

z2 + U2
c

. (28)

This implicit analytical equation for Uc is the final result.
For an arbitrary free DOS no further simplifications are
possible.

7 Discussion

It should be stressed once more that equation (28) results
from an exact variational principle simply by the restric-
tion that the trial self-energies be representable by the
two-site reference system. The two-site model generally
yields a two-pole self-energy which is the minimal require-
ment for a three-peak structure of the single-particle ex-
citation spectrum. Therefore, it may also be stated that
equation (28) gives the optimal result for a two-pole self-
energy.

Equation (28) turns out to be more complicated as
compared to the result of the linearized DMFT [38]:

U (L−DMFT)
c = 6

√∫ ∞

−∞
dz ρ0(z) z2 . (29)

Interestingly, the first term on the r.h.s. of equation (28)
resembles Brinkman and Rice (Gutzwiller) result [50] for
the critical interaction:

U (BR)
c = −16

∫ 0

−∞
dz ρ0(z) z . (30)

A rough approximation of the second term in (28) us-
ing (z2 + U2

c /2)/
√

z2 + U2
c → Uc/2 then yields Uc ≈

3U
(BR)
c /4. This reduction of the critical interaction as

compared to the BR result is the dominating effect.
For a semi-elliptical free DOS with variance ∆ = 1

(band width W = 4), one has U
(L−DMFT)
c = 6 and

U
(BR)
c = 6.7906. The numerical solution of equation (28)

is straightforward and yields Uc = 5.8450. As expected
this is fully consistent with the numerical determination
of Uc (Sect. 5). The result is close to the one predicted by
the L-DMFT. Compared to numerical estimates from full
DMFT calculations U

(DMFT)
c = 5.84 (NRG, Ref. [23]) and
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Table 1. Critical interaction Uc as obtained from the SFA
within the ns = 2 dynamical impurity approximation for
different free densities of states. Each DOS is normalized,∫∞
−∞ ρ0(z) = 1, symmetric, ρ0(z) = ρ0(−z), and has unit vari-

ance, ∆ =
∫∞
−∞ z2ρ0(z) = 1. A(z) = Θ(W/2 + z)Θ(W/2 − z)

is a cutoff function. W is the band width. The critical interac-
tion from the Gutzwiller (Brinkman-Rice) approach [50] and
the available full DMFT results are shown for comparison. The

linearized DMFT [38] yields U
(L−DMFT)
c = 6 for any DOS with

unit variance.

ρ0(z) W Uns=2
c UBR

c UDMFT
c

Gaussian ∞ 5.5663 6.3831 5.80a

3A(z)(|z| − √
10)2/20

√
10 2

√
10 5.5284 6.3246

triangle 2
√

6 5.6696 6.5320

semi-ellipse 4 5.8450 6.7906 5.84b, 5.88a

rectangle 2
√

3 5.9385 6.9282 6.32c

A(z)|z|/2 2
√

2 6.3554 7.5425

9
√

3A(z)z2/10
√

5 2
√

5/3 6.4944 7.7460

δ(z − 1)/2 + δ(z + 1)/2 2 6.6686 8.0000

aRef. [23].
bRef. [22].
cR. Bulla, private communication.

U
(DMFT)
c = 5.88 (PSCM, Ref. [22]), one can state that the

prediction of the L-DMFT is improved.
Results for different free densities of states are dis-

played in Figure 3 and Table 1. For a meaningful com-
parison, each DOS has unit variance ∆ = 1 where ∆2 =∫∞
−∞ dzρ0(z)z2. The band width W varies. The DOS with

the smallest W (but ∆ = 1) consists of two δ-peaks while
W = ∞ for a Gaussian DOS. Clearly, there is no true
Mott transition in the former case (but also in the latter
this is questionable). However, the inclusion of these ex-
treme cases is instructive when studying the trend of Uc as

a function of W . Note that for ∆ = 1 the L-DMFT yields
Uc = 6 irrespective of the form of the DOS.

The critical interaction from the two-site DIA is al-
ways close the L-DMFT result but considerably lower than
the Gutzwiller value. The two-site DIA confirms the cen-
tral prediction of the L-DMFT that it is the variance of
the DOS that is crucial for the critical interaction. How-
ever, there is also a weak trend superimposed, namely a
systematic increase of Uc with decreasing band width W
(with the exception of the Gaussian DOS). This is the
same trend that is also present in the Gutzwiller results.
It would be interesting to see whether or not this trend
is confirmed by full DMFT calculations. Comparing the
full DMFT results for the Gaussian, for the rectangular
and the semi-elliptic DOS shows the mentioned trend.
However, the comparison of the two-site DIA and of the
L-DMFT with the full DMFT for the available numerical
data is not fully conclusive.

8 Finite temperatures

So far only the zero-temperature limit has been consid-
ered. The Mott transition at finite temperatures, how-
ever, is particularly interesting as there is a comprehensive
physical picture available with a comparatively complex
phase diagram. This phase diagram in the U -T plane was
first suggested by the iterative perturbation theory [9,11].
The nature of the transition and the topology of the phase
diagram have been established entirely using analytic ar-
guments [49] and has been worked out quantitatively
using different numerical methods [24,27–29]. The criti-
cal regime is accessible by the projective self-consistent
method [22].

As this phase diagram represents a valuable bench-
mark for any approximation, it is interesting to see
whether or not it can be rederived within the most simple
two-site DIA. The application of the theory for finite T is
straightforward but can no longer be done analytically. As
for the derivation of the T = 0 results in the non-critical
regime (see Sect. 5), calculations are performed along the
lines of Section 4.

It turns out that for finite temperatures the Mott tran-
sition is predicted to be discontinuous. This is demon-
strated in Figure 4 which shows Ω(V ) for different T and
fixed U = 5.2 (ns = 2). At low but finite T there are three
stationary points (see arrows) corresponding to three dif-
ferent phases of the system. The metallic phase has the
largest value V = Vmet. With increasing temperature Vmet

decreases and Ω(Vmet) ∝ T 2 for low T . This gives a linear
entropy S(T ) = −∂Ω(T )/∂T and a linear specific heat
Cv = T∂S(T )/∂T = γT ∝ z−1T as it is characteristic for
a Fermi liquid (µ = U/2 is fixed). The insulating phase
has the smallest value V = Vins, and the grand potential
Ω(Vins) ∝ T for low T . For T → 0 the entropy approaches
S → L ln 2 reflecting a 2L-fold ground-state degeneracy of
the insulator which is known to be an artifact of mean-
field theory [11]. The specific heat Cv vanishes exponen-
tially for T → 0. For U = 5.2 and low T , however, the
insulating phase is metastable as compared to the metallic
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Fig. 4. Grand potential per site at U = 5.2 for different T as
a function of V . The arrows indicate the stationary points.

phase since Ω(Vins) > Ω(Vmet). Due to the different be-
havior at low T , there must be a temperature Tc(U) where
Ω(Vins) = Ω(Vmet). In fact, for T = 0.012 > Tc(U = 5.2)
the insulator is stable as compared to the metal. At Tc(U)
or, conversely, at a critical interaction Uc(T ), the ns = 2-
DIA thus predicts a first-order transition with a discon-
tinuous jump in the entropy. As can be seen in Figure 4,
the metallic phase ceases to exist for still higher tempera-
tures, and only the insulating phase is left. This is due to a
coalescence of the metallic with a third phase at another
critical temperature Tc2(U) (or, conversely, at a critical
interaction Uc2(T )). This third phase turns out to be less
stable as compared to the metal and to the insulator in the
entire parameter regime. Similarly, one can define a criti-
cal temperature Tc1(U) (at smaller U) and thus a critical
interaction Uc1(T ) where the insulating phase coalesces
with the third phase.

Calculations for different U and T have been per-
formed to obtain the entire phase diagram within the
two-site approach. The result is shown in Figure 5. For
U ≤ Uc2(T ) there is a metallic phase which is smoothly
connected to the U = 0 limit. On the other hand, for
U ≥ Uc1(T ) there is an insulating phase which is smoothly
connected with the Mott insulator for U → ∞. Metallic
and insulating phase are coexisting for Uc1(T ) ≤ U ≤
Uc2(T ). At zero temperature, the metal is stable as com-
pared to the insulator in the entire coexistence region, and
the transition is continuous at Uc = Uc2. For finite temper-
atures the transition is discontinuous at a critical interac-
tion Uc(T ) with Uc1(T ) ≤ Uc(T ) ≤ Uc2(T ). With increas-
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metal insulator

coex.

Tc

U

T crossover

Fig. 5. Phase diagram for the Mott transition in the para-
magnetic phase of the Hubbard model at half-filling. Calcu-
lations for a semi-elliptical density of states with band width
W = 4. Reference system H ′: two-site model. Uc2: critical in-
teraction strength up to which there is a (metallic) solution
smoothly connected with the metal at U = 0. Uc1: critical
interaction strength down to which there is an (insulating) so-
lution smoothly connected with the Mott insulator for U → ∞.
Uc: first-order transition line in the coexistence region, termi-
nating at the second-order critical point at Tc.

ing temperatures the coexistence region Uc1(T ) ≤ U ≤
Uc2(T ) shrinks and disappears above a critical tempera-
ture Tc which is defined via Uc1(Tc) = Uc2(Tc). Above Tc

the metallic phase is smoothly connected with the insu-
lating phase.

Qualitatively, this is exactly the same result that is
obtained within the full DMFT [11]. It is very remarkable
that the rather complex topology of the phase diagram
can be reproduced with a comparatively simple two-site
model as a reference system. This shows that it is essen-
tial to perform the mapping onto the reference system in
a way which is thermodynamically consistent and which
is controlled by a physical variational principle. Note that
the L-DMFT, or its extension away from the critical point
at T = 0 [43], fails to reproduce the discontinuous transi-
tion for T > 0 and the critical temperature Tc due to the
ad-hoc character of the approximation.

Quantitatively, one should expect some deviations
from the results of the full DMFT due to the simplicity of
the two-site model. Comparing with the NRG result [24]
for Uc1(T = 0) ≈ 4.8 − 5.0, the two-site approximation
overestimates the critical interaction by a few per cent.
The determination of the critical temperature is difficult in
any numerical approach. Tc ≈ 0.05−0.08 is estimated from
the QMC and NRG results of references [24,27]. Thus, the
two-site approximation underestimates Tc by more than a
factor 2. It is worth mentioning that the numerical effort
to obtain the entire phase diagram in the U − T plane
is of the order of a few minutes on a standard worksta-
tion which is negligible as compared to a DMFT-QMC
calculation.
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9 Conclusions

Our present understanding of the Mott-Hubbard transi-
tion is mainly based on the exact solution of the one-
dimensional case on the one hand and on the D = ∞
mean-field picture provided by the DMFT on the other
hand. For the physically more relevant two- or three-
dimensional Hubbard model, however, neither the ana-
lytical concepts developed for D = 1 nor the mean-field
theory can be expected to give an essentially correct and
comprehensive description. Direct numerical approaches,
such as QMC, are able to give essentially exact results
for a D = 2, 3 dimensional lattice of finite spatial extent.
However, the relevance of the results for the thermody-
namic limit and, in many cases, for the low-temperature,
low-energy regime remains an open question.

In this situation, a combination of a direct numeri-
cal approach for systems of finite size with the mean-field
concept appears to be advantageous. This is more or less
the direction that is followed up by the different clus-
ter extensions of the DMFT [37,51–53]. Via a general-
ized mean-field concept, the original lattice problem given
by the Hamiltonian H is mapped onto a cluster problem
described by a Hamiltonian H ′. In fact, due to the pres-
ence of strong short-range antiferromagnetic correlations
a considerable revision of the mean-field picture is proba-
bly necessary [54]. However, the cluster extensions of the
DMFT suffer from the fact that the mean-field formula-
tion requires that the sites of the finite cluster are coupled
to uncorrelated baths with an infinite number of degrees
of freedom each. This circumstance complicates the prac-
tical solution of the H ′ problem (which must be solved
repeatedly during the self-consistency cycle) so much that
additional approximations are required and/or stochastic
numerical methods.

The self-energy-functional approach offers an interest-
ing alternative as the reference system H ′, the original
model H is mapped onto, is by no means completely pre-
determined. The SFA gives a very general prescription
how this mapping can be performed while keeping the
thermodynamical consistency of the approach as an ex-
plicit expression for the grand potential is provided. In
this way the DMFT and the cellular DMFT are recovered
as certain limits for special choices of H ′, namely for a de-
coupled system of clusters of size Nc = 1 or Nc > 1 includ-
ing couplings to nb = ∞ bath degrees of freedom. There
is, however, the additional possibility to construct approx-
imations with nb < ∞ which are consistent in themselves
in the same way as are the DMFT and the C-DMFT.

Now, the question is whether or not an approximation
with a finite number of bath sites nb < ∞ can be toler-
ated. Note that even in the (C-)DMFT it becomes nec-
essary to reduce the problem posed by H ′ with nb = ∞
to a numerically tractable one with a finite number of
degrees of freedom. While this additional approximation
is controlled within QMC or ED approaches, for exam-
ple, it nevertheless violates thermodynamical consistency.
Within the SFA, on the contrary, the approximation is
derived from a thermodynamical potential for any nb, in-
finite or finite or even so small as nb = 1. Depending on

the quantity and accuracy one is interested in, there can
be a rapid convergence with respect to nb (cf. Ref. [30])
so that a small number might be sufficient. For cluster
approximations, the best choice is by no means clear as
it must be balanced with the choice of the cluster size
Nc. This strongly depends on the lattice dimension. In
fact, it has been shown [32] that for the one-dimensional
Hubbard model a larger Nc is to be preferred as compared
to a larger nb.

In this context, it is interesting to see where one are
led to with the most simple reference system conceivable.
This is a model H ′ characterized by Nc = 1 and nb = 1
which yields the so-called two-site dynamical impurity ap-
proximation (DIA). The answer is given with the present
paper: Even in this approximation the Mott transition
shows up. At zero temperature the transition turns out
to be continuous at a finite critical interaction Uc where
there is a coalescence of the metallic with a coexisting in-
sulating phase. For finite temperatures, on the other hand,
the transition is discontinuous. The first-order line Uc(T )
terminates at a second-order critical point (Uc(Tc), Tc),
and for T > Tc there is a smooth crossover only. This
is qualitatively the same picture that has been found be-
forehand in the full DMFT. Furthermore, the two-site DIA
yields a Uc at T = 0 that is surprisingly close to the re-
sult of the full DMFT. In this respect the two-site DIA
is of similar quality as the linearized DMFT [38], another
approach that is based on a mapping onto the two-site
SIAM. Whether or not the Uc-results of the two-site DIA
improve on those of the L-DMFT is difficult to decide in
view of the existing (full) DMFT data. More important,
however, the conceptual improvement gained is substan-
tial: While the mapping procedure on the two-site model,
though physically motivated, is done in an ad-hoc way in
the L-DMFT, the two-site DIA is derivable from a ther-
modynamical potential and can be characterized as an
optimal two-site approach in fact.

The fact that a reasonable mean-field description of
the Mott transition is possible even for the simple two-
site DIA, motivates further SFA studies of the transition
with improved approximations in the future (e.g. using
finite clusters, Nc > 1, and small nb). In case of larger
and more complex reference systems, however, it becomes
more and more important to have a numerically efficient
and accurate method for the evaluation of the self-energy
functional at hand. The detailed analysis of the different
contributions to the functional has been another major
intention of the present study. Using the causality prop-
erties of the Green function, it has been shown that the
important Tr ln(−G) term can be written as the grand po-
tential of a system of non-interacting quasi-particles with
unit weight (apart from a correction term that cancels
out in the functional eventually). While this result is also
interesting by itself, it is very well suited for an efficient
numerical implementation. As the energies of the fictitious
quasi-particles are given by the poles of the Green func-
tion, they can be found in a comparatively simple way by
exploiting general causality properties. In particular, there
is no need for a small but finite Lorentzian broadening,
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ω → ω + iδ, which must be introduced in a more direct
way to evaluate the functional [32,33]. This will become
important when studying the critical regime of the Mott
transition, where an accurate computation of small en-
ergy differences is vital, using an approximation with sev-
eral variational parameters. Studies in this direction are
intended for the future.
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Appendix A

Here is will be shown that the Green’s function G is
causal: For any t′ the self-energy Σ = Σ(t′) is causal since
it is defined to be the exact self-energy of the reference sys-
tem H ′ = H0(t′)+H1(U). Likewise, the Green’s function
G0 is causal. It has to be shown that G ≡ (G−1

0 − Σ)−1

is causal if Σ and the free Green’s function G0 are known
to be causal.

Causality of G means (i) that Gαβ(ω) is analytic in
the entire complex ω plane except for the real axis and
(ii) that Gret(ω) = G(ω + i0+) = GR − iGI for real ω
with GR, GI Hermitian and GI positive definite. (i) is
easily verified. To show (ii) we need the following

Lemma: For Hermitian matrices A, B with B positive
definite, one has

1
A ± iB

= X ∓ iY (A.1)

with X, Y Hermitian and Y positive definite. The proof
of the Lemma is straightforward:

1
A ± iB

= B− 1
2

1
B− 1

2 AB− 1
2 ± i

B− 1
2 = D

1
C ± i

D

(A.2)
with C, D Hermitian and D = B− 1

2 positive definite. Let
C = UcU† with U unitary and c diagonal. Then

1
A ± iB

= DU
1

c ± i
U†D = DU

c ∓ i

c2 + 1
U†D = X∓iY

(A.3)
with X Hermitian and

Y = DU
1

c2 + 1
U†D (A.4)

Hermitian and positive definite.
Consider a fixed (real) frequency ω. Since G0 is causal,

G0,ret = G0,R− iG0,I with G0,R, G0,I Hermitian and G0,I

positive definite. Using the lemma, G−1
0,ret = PR+iPI with

PR, PI Hermitian and PI positive definite. Since Σ is

causal, Σret = ΣR − iΣI with ΣR, ΣI Hermitian and ΣI

positive definite. Therefore,

Gret =
1

PR + iPI − ΣR + iΣI
=

1
QR + iQI

(A.5)

with QR Hermitian and QI Hermitian and positive defi-
nite. Using the lemma once more, shows G to be causal.

Appendix B

Consider the function

f(ω) =
∑
m

Rm

ω − ωm
(B.1)

with real isolated first-order poles at ω = ωm and positive
residues Rm > 0. We have:

− 1
π

Imf(ω + i0+) > 0 (B.2)

In Section 3 f(ω) = gk(ω) = 1/(ω + µ − ηk(ω)).
In a polar representation −f(ω + i0+) = r(ω)eiφ(ω)

with −π < φ(ω) ≤ π. On the principal branch of the
logarithm and for real ω one has Im ln(−f(ω + i0+)) =
φ(ω). For any ω 
= ωm we have Im(−f(ω + i0+)) = 0+

from equations (B.1) and (B.2) and thus φ(ω) = π for
−f(ω) < 0, and φ(ω) = 0 for −f(ω) > 0. Consequently,

Im ln(−f(ω + i0+)) = π Θ(f(ω)) = π Θ(1/f(ω)) , (B.3)

where Θ is the step function. For ω = ωm, the imaginary
part of −f(ω + i0+) diverges. However, −π < φ(ω) ≤ π
(in fact φ(ωm + 0+) = −π/2 and φ(ωm − 0+) = π/2).
Hence, Im ln(−f(ω + i0+)) remains finite at ω = ωm and
can be ignored in an integration over real ω as the poles
of f(ω) are isolated.

Appendix C

Consider a function f = f(ω) which is analytical except
for isolated first-order poles on the real axis and which is
real for real ω. Θ(f(ω)) is constant almost everywhere, and
thus the derivative dΘ(f(ω))/dω vanishes almost every-
where. A non-zero derivative may either occur if f(ω) = 0,
i.e. at the zeros ωm. This gives a contribution:

δ(f(ω))f ′(ω) =
∑
m

f ′(ωm)
|f ′(ωm)|δ(ω − ωm) (C.1)

where f ′(ω) ≡ df(ω)/dω. A second contribution arises
from the first-order poles of f(ω) at ζn. The poles are
the zeros of the function 1/f(ω). Note that Θ(f(ω)) =
Θ(1/f(ω)) since the sign of the argument is unchanged.
Thus the contribution due to the poles is:

δ(1/f(ω))(1/f)′(ω) =
∑

n

(1/f)′(ζn)
|(1/f)′(ζn)|δ(ω − ζn). (C.2)



M. Potthoff et al.: Self-energy-functional approach: Analytical results and the Mott-Hubbard transition 347

We have:

dΘ(f(ω))
dω

= δ(f(ω))f ′(ω) + δ(1/f(ω))(1/f)′(ω)

=
{zeros}∑

m

εmδ(ω − ωm) +
{poles}∑

n

εnδ(ω − ζn)

(C.3)

with εm = ±1 and εn = ±1 depending on the sign of the
slope of f at the zeros ωm and the sign of the residue of
f at the poles ζn, respectively.

Consider the function f(ω) = ω+µ−ηk(ω). The zeros
of f are the poles of the diagonalized Green’s function
1/(ω+µ−ηk(ω)) which has positive residues. This implies
a positive f ′ at ωm and εm = +1. The poles of f are the
poles of the self-energy which has positive residues. Thus
the residues of f at the poles are negative and (1/f)′ is
negative at ζn and εn = −1. Hence:

d

dω
Θ(ω + µ − ηk(ω)) =

∑
m

δ(ω − ωm) −
∑

n

δ(ω − ζn) .

(C.4)

Appendix D

The reference system H ′ is a set of decoupled single-
impurity Anderson models with one-particle energy of
the impurity site ε1, conduction-band energies εk with
k = 2, ..., ns and hybridization strengths Vk. We first cal-
culate the eigenvalues of the hopping matrix t′. The ma-
trix is block diagonal with respect to the site index i. Each
block is labeled by the “orbital” index k = 1, ..., ns. There
are non-zero elements of the matrix for k = 1, k′ = 1, and
k = k′ only:

t′kk′ = (1− δk1)δk′1 Vk + δk1(1− δk′1) Vk′ + δkk′ εk′ (D.1)

Furthermore, Σkk′(ω) = δk1δk′1Σ(ω). Using

det


d1 a∗

2 a∗
3 a∗

4 ...
a2 d2 0 0 ...
a3 0 d3 0 ...
a4 0 0 d4 ...
... ... ... ... ...

 = det


d̃1 0 0 0 ...
0 d2 0 0 ...
0 0 d3 0 ...
0 0 0 d4 ...
... ... ... ... ...


(D.2)

where d̃1 = d1 −∑ns
k=2 |ak|2/dk and the general relation

tr lnA = ln det A, we find:

1
2
tr′ ln(−G′(iω)) = ln det

−1
iω + µ − t′ − Σ(iω)

= ln det

−G′
1 0 0 ...

0 −G′
2 0 ...

0 0 −G′
3 ...

... ... ... ...


= ln(−G1(iω)) +

ns∑
k=2

ln (−Gk(iω))

(D.3)

with G1(iω) and Gk(iω) for k = 2, ..., ns as defined by
equations (11, 12). The factor 1/2 accounts for the two
spin directions.
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35. D. Sénéchal, D. Pérez, M. Pioro-Ladrière, Phys. Rev. Lett.

84, 522 (2000)
36. M.G. Zacher, R. Eder, E. Arrigoni, W. Hanke, Phys. Rev.

B 65, 045109 (2002)
37. G. Kotliar, S.Y. Savrasov, G. Pálsson, G. Biroli, Phys.

Rev. Lett. 87, 186401 (2001)



348 The European Physical Journal B

38. R. Bulla, M. Potthoff, Eur. Phys. J. B 13, 257 (2000)
39. M. Potthoff, W. Nolting, Phys. Rev. B 60, 7834 (1999)
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